Journal of Chromatographic Science, Vol. 46, May/June 2008

Prediction of Kovats Retention Indices of Some Aliphatic
Aldehydes and Ketones on Some Stationary Phases at
Different Temperatures Using Artificial Neural Network

Elaheh Konoz!, Mohammad H. Fatemi?*, and Razieh Faraji?

'Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran and 2Department of Chemistry, Mazandaran

University, Babolsar, Iran

In this work, the Kovats retention indices of aliphatic ketones and
aldehydes on four stationary phases at different temperatures are
predicted. The data set consists of retention indices of 35 aldehydes
and ketones on HP-1, HP-50, DB-210, and HP-Innowax stationary
phase. The molecular descriptors that appear in this model are:
path one connectivity index, fractional atomic charge weighted by
partial positive surface area, and dipole moment, which are
selected by stepwise multiple linear regression (MLR). The selected
descriptors encode steric and electronic aspects of molecules.
These descriptors, together with column temperature, are used as
inputs of the constructed artificial neural network (ANN). The
optimized network has 4-3-4 topology, in which its outputs are
retention indices of molecules at four stationary phases at the
desired temperature. Comparison between statistical results
calculated for MLR and ANN models reveals that all statistics have
improved considerably in the case of the ANN model. The
improved statistics for the ANN would suggest the existence of a
nonlinear relation between selected molecular descriptors and their
retention in gas chromatography. Also, the simultaneous prediction
of retention indices for aldehydes and ketones at four stationary
phases at different temperatures using only three molecular
descriptors shows the capability of the obtained ANN model.

Introduction

The Kovats retention indices in gas chromatography (GC)
represent the retention behavior of a compound relative to a
standard set of hydrocarbons, using a logarithmic scale (1). The
identification of many compounds is often accomplished on the
basis of a comparison between the GC retention of a standard
sample and the suspected material. However, it is not always
possible to obtain pure standard compounds for such a com-
parison; therefore, the development of a theoretical model for
estimating the retention indices seems to be useful. Reten-
tion in GC is a phenomenon that primarily depends on the
interactions of the solute molecules and the stationary phase.
The forces associated with these interactions can be related to
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the geometric and topological structure and also to the elec-
tronic environments of the molecule. Intrinsic to chemistry is
the concept that there are relationships between bulk proper-
ties of compounds and their molecular structures, which pro-
vide a connection between the macroscopic and the
microscopic properties of the matter. Therefore, knowledge of
the molecular structures is the key to understanding the prop-
erties and activities of molecules. Quantitative structure-prop-
erty relationship (QSPR) is a mathematical method that relates
the properties of a molecule to its structural features. This
approach has been used to obtain simple models that explain
and predict the chromatographic behavior of various classes of
compounds. There are some reports about the applications of
QSPR in chromatographic studies (2-6). Jurs and his group
correlated the observed Kovats retention indices of sulfur vesi-
cants by multiple linear regression techniques (MLR) using 9
descriptors in their models for different stationary phases (7).
Dimov and Osman used a quantitative structure-retention
relationship technique to relate the chromatographic retention
of 38 iso-alkanes to their molecular structural features (8).
Kang et al. successfully predicted the capillary GC retention
indices of 100 polycyclic aromatic hydrocarbons (9). Also,
0. Farkas and K. Héberger reported the construction of a linear
model for the prediction of retention indices of some aliphatic
alcohols (10). They used variable selection methods including
ridge regressions, partial least square, pair-correlation method,
forward selection, and best subset selection methods. They
concluded that forward selection and best subset variable selec-
tion methods gave reliable results. There are some papers
about the QSPR modeling of retention indices of oxo com-
pounds. R.D.M.C. Amboni et al. reported the construction of a
linear QSPR model for the estimation of retention indices of 54
oxo compounds on a low polarity stationary phase at 50°C,
and also two separate MLR models for 30 oxo compounds on
HP-50 and HP-1 stationary phases (11). They successfully used
a semi-empirical topological index (Izy) in their constructed
QSPR models. In a similar work, B.S. Junkens et al. studied the
application of these molecular indices in QSPR studies of the
same data set at one temperature (50°C) (12). They successfully
constructed four MLR models for prediction or Kovats reten-
tion indices on HP-1, HP-50, DB-210, and HP-Innowax
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stationary phases. Also, B. Ren investigated the quantitative
correlation between the Kovats retention indices of 33 alde-
hydes and ketones and their atom-type-based Al topological
indices on four stationary phases (HP-1, HP-50, DB-210, and
HP-Innowax) at 50°C using four separate linear equations (13).
They used 4-5 molecular descriptors in each model. The
results of their studies indicate that the molecular size makes
a dominant contribution to retention indices.

Over the last few years, the artificial neural network (ANN)
has attracted increasing interest as a most promising method
in classification and multivariate calibration problems, and
also provides an interesting new approach to QSPR studies
(14-18). Although in the MLR method, the analysis is limited
to a certain number of possible interactions, more terms can be
examined for interactions between features by the ANN. Also,
ANNs are capable of recognizing non-linear relationships
between inputs and outputs. In addition, the ANN can use
qualitative as well as quantitative inputs, and also it does not
require an explicit relationship between the inputs and the
outputs. The main aim of the present work was to develop a
QSPR model using an ANN to predict Kovats retention indices
of aliphatic ketones and aldehydes on some stationary phases
at different temperatures. In the first step, a combined MLR
model was constructed, then an ANN was developed for inspec-
tion of non-linear relations between different parameters in the
model, for the simultaneous modeling and prediction of the
retention indices on different stationary phases.

Methods

Data Set

The data set of Kovats retention indices was taken from the
values reported by Héberger et al. (19). The molecules in the
data set are 35 aliphatic ketones and aldehydes, and are shown
in Table I. The Kovats retention indices of all molecules
included in the data set were obtained under the same condi-
tions on four stationary phase, which are: dimethylpolysiloxane
(HP-1), 50% phenylmethylpolysiloxane (HP-50), 50% Trifluo-
ropropylmethylpolysiloxane (DB-210), and polyethylene glycol
(HP-Innowax). The retentions of these compounds were mea-
sured at 50°C, 70°C, 90°C, and 110°C; therefore, the data set
consists of 560 retention indices data. The Kovats retention
indices fall in the range of 360.4 to 1055.1 for acetaldehyde and
5-nonanone on HP-1, 484.3 to 1178.8 for acetaldehyde, and 5-
nonanone on HP-50, 630.4 to 1370 for acetaldehyde and 5-
nonanone on HP- DB-210, and 715.8 to 1353 for acetaldehyde
and 5-nonanone on HP-Innowax, respectively.

Descriptors generation and regression analysis

Retention in GC is the result of competitive distribution of the
solute between the mobile and stationary phase. The molecular
structure and chemical properties of the solute and stationary
phase determine the type and extent of the interactions between
the solute and stationary phases. The differences between these
interactions govern the retention behavior of the solute through
the column. Due to the diversity of the molecules studied in this

work, different molecular descriptors were calculated. These
molecular descriptors were mainly computed using the
CODESSA software. This software, developed by Katritzky’s
group, enables the calculation of a large number of quantitative
descriptors based on molecular structural information (20-22)
and codes this chemical information into mathematical forms. In
the first stage, the structures of the molecules were drawn by the
HyperChem 4.0 program (23) and exported in a file format suit-
able for the MOPAC program (24). Then the geometry optimiza-
tion was performed with the semieperical quantum method AM1
(25) using the MOPAC 6.0. Then all geometries were fully opti-
mized without symmetry restrictions. In all cases, frequency cal-
culations have been performed in order to ensure that all the
calculated geometries correspond to true minima. The Hyper-
Chem and MOPAC output files were used by the CODESSA pro-
gram to calculate five classes of descriptors, including:
constitutional (number of various types of atoms and bonds,
number of rings, molecular mass, etc.); topological (Winner
index, Randic indices, Kier-Hall shape indices, etc.); geometrical
(moment of inertia, molecular volume, molecular surface area,
etc.); electrostatic (minimum and maximum of partial charges,
polarity parameters, charged partial surface area descriptors,
etc.); and quantum chemical (reactivity indices, dipole moment,
HOMO and LUMO energies, etc.). Because it is not possible to
know a priori which descriptors are most relevant to the problem
at hand, a comprehensive set of descriptors is usually employed,
chosen based on experience, software availability, and computa-
tional cost. The heuristic MLR procedures available in the frame-
work of the CODESSA program were used to perform a complete
search for the best multi linear correlations with a multitude of
descriptors. This procedures provide colinearity control (i.e., any
two descriptors inter-correlated above 0.90 are never involved in
the same model) and implement heuristic algorithms for the
rapid selection of the best correlation, without testing all possible
combinations of the available descriptors. The heuristic method
of descriptor selection proceeds with a pre-selection of descriptors
by eliminating (7) those descriptors that are not available for
each structure, (i7) descriptors having a small variation in mag-
nitude for all structure, (i) descriptors that give an F-test’s value
below 1.0 in the one-parameter correlation, and (i) descriptors
whose t-values are less than the user-specified value, etc. This pro-
cedure orders the descriptors by decreasing correlation coefficient
when used in one-parameter correlation coefficient. The next
step involves correlation of the given property with (i) the top
descriptor in the previous list with each of the remaining descrip-
tors and (i7) the next one with each of the remaining descriptors,
etc. The best pairs, as evidenced by the highest F-values in the
two-parameter correlations, are chosen and used for further
inclusion of descriptors in a similar manner. The heuristic
method usually produces correlations 2-5 times faster than other
methods with comparable quality. The rapidity of calculations
from the heuristic method renders it as a suitable method of
choice in practical research. Though MLR failed to obtain an
appropriate QSPR model, the nonlinear relationship within the
data was well incorporated into the model developed by the ANN.
Descriptors that appeared in the combined MLR model for HP-1,
HP-50, DB-210, and HP-Innowax stationary phase were used as
inputs for the generated ANNs.
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ANN

An ANN is a biologically inspired computer program
designed to learn from data in a manner of emulating the
learning pattern in the brain. Most ANN systems are very com-
plex high-dimension processing systems. Training of the ANN
can be performed using the back-propagation algorithm. In
order to train the network using the back-propagation algo-
rithm, the differences between the ANN output and its desired
value are calculated after each training iteration and the values
of weights and biases modified using these error terms. A
detailed description of the theory behind a neural network has
been adequately described elsewhere (26-28). In the present
work, an ANN program was written in FORTRAN 77 in our lab-
oratory. This network was feed-forward fully connected with
three layers with sigmoidal transfer functions. The inputs of
this network are descriptors, which are selected by a stepwise
MLR feature selection technique. The value of each input was
divided into its mean value to bring them into dynamic range
of the sigmoid transfer function of the network. The initial
values of weights were randomly selected from a uniform dis-
tribution that ranged between —0.3 and +0.3, and the initial
values of biases were set at one. These values were optimized
during the network training. The back-propagation algorithm
was used to train the network. Before training, the network
parameters were optimized. These parameters are: number of
nodes in the hidden layer, weights and biases learning rates,
and the momentum. Procedures for the optimization of these
parameters were reported in our previous papers (29-32). Then
the optimized network was trained using a training set for the
adjustment of weight and bias values. It is known that a neural
network can become over-trained. An over-trained network
has usually perfectly learned the stimulus pattern it has seen,
but cannot give an accurate prediction for unseen stimuli, and
is no longer able to generalize. There are several methods for
overcoming this problem. One method is to use a test set to
evaluate the prediction power of the network during its
training. In this method, after each 1000 iterations, the net-
work was used to calculate the retention indices of molecules
included in the test set. To maintain the predictive power of the
network at a desirable level, training was stopped when the
value of error for the test set started to increase. Because the
test error is not a good estimate of the generalization error, the
prediction potential of the model was evaluated on a third set
of data, named the prediction set. The compounds in the pre-
diction set were not used during the training process and were
reserved to evaluate the predictive power of the ANN model.
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Results

Tables I and II show the data set and corresponding ANN pre-
dicted values of retention indices of all molecules studied in
this work, respectively. Table III shows the best-combined MLR
model, which contains three molecular descriptors that encode
the structural features of molecules, polarity of stationary
phase, and column temperature. These molecular descriptors
are: path one molecular connectivity index (1y), fractional
atomic charge weighted by partial positive surface area
(FPSA3), and dipole moment (dp). Examination of the descrip-
tors included in the combined model reveals that they encode
different aspects of the molecular structures. These parameters
mainly show the topological and electronic characteristics of
these molecules. From the values of the mean effect that cal-
culated for each descriptor, it can be concluded that the most
important descriptor in the model is path one connectivity
index (%), with the largest mean effect. The appearance of
this descriptor in the model reveals the contribution of steric
interaction on molecular retention in GC. The positive mean
effect for this descriptor indicates that the molecule with a
higher value of 1y will have a higher retention. This relation-
ship may be explained thus: that the magnitude of intermole-
cular interaction between the solute and the stationary phase
is directly related to the size of the molecule (33). Another
descriptor was FPSA3; this quantum chemical descriptor
clearly indicates the importance of charge distribution of the
solute on their retention in GC due to electronic interaction.
The remaining molecular descriptor was dipole moment of
solute, which has an electronic nature. The positive sign of the
mean effects for these two descriptors reveals that an increase
in these descriptors causes an increase in molecular retention
due to an increase in solute-stationary phase interactions.
Other parameters in the MLR model are polarity of stationary
phases and column temperature, which indicate the contribu-
tion of experimental conditions in the combined MLR model.

The next step was to construct the ANN model. The data
used in ANN was a matrix containing eight columns: three
molecular descriptors, temperature, and retention index in
four stationary phases. Because we have the retention data for
35 molecules at four different temperatures, this matrix has
140 rows. The data matrix is randomly divided into three
groups (training, test, and prediction set), each of which con-
sists of 100, 20, and 20 rows, respectively. The training set
was used to train the network, the test set was used to avoid
overtraining, and the prediction set was used to evaluate the

Table Ill. Specification of Combined Multiple Linear Regressions Model

Descriptor Notation Coefficient Mean effect
Path one connectivity index 193.752 +(3.637) 61.280
Fractional atomic charge weighted partial positive surface area FPSA3 5748 301 +(907.088) 7.289
Dipole moment 749 +(11.357) 4.228
Polarity of column .160 £ (0.004) 50.301
Temperature 0 199 +(0.1236) 1.812
Constant 1 —437.578 + (66.770) -7.539
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prediction power of the ANN model. Before training the net-
work, the parameters of the number of nodes in the hidden
layer, weights and biases learning rates, and momentum values
were optimized. Table IV shows the architecture and specifi-
cation of the optimized network. The optimized ANN has 4-3-
4 topology. The ANN inputs are three molecular descriptors
and column temperatures, while each node in the output layers
represents the retention index (RI) of the molecule of interest
on one stationary phase (four outputs nodes represent the RI
on four stationary phases). Thus, entering one row of molec-
ular descriptors (1, FPSA3, dp, and temperature), this network
simultaneously predicts the retention indices of this molecule
in HP-1, HP-50, DB-210, and HP-Innowax columns. After opti-
mization of the ANN parameters, the network was trained for
the adjustment of weight and bias values. In order to evaluate

Table IV. Architecture and Specification of the ANN
Model

Value Parameter
4 No. of nodes in the input layer
3 No. of nodes in the hidden layer
4 No. of nodes in the output layer
0.7 Weights learning rate
0.5 Biases learning rate
0.5 Momentum

Sigmoid Transfer function

the predictive power of the ANN model, the trained network
was used to calculate the retention indices for molecules in the
prediction set. The overall average of relative error between
ANN calculated and experimental values of retention indices
were 7.2%. To compare the applied chemometric methods of
MLR and ANN in predicting the retention indices, some sta-
tistics for these models are calculated and are shown in Table
V. As can be seen from this table, all statistics have improved
considerably in the case of the ANN model. The MLR standard
error values of 47.441, 46.848, and 50.473 were obtained for
training, test, and prediction sets, respectively, which should be
compared with corresponding values of 8.047, 9.881, and
10.479 for the ANN model. Also, the standard error of the ANN
model is comparable with the level of experimental uncer-
tainty in the determination of retention indices in GC. Figure
1 shows a plot of the calculated versus the experimental values
of RIs for the prediction set. A correlation coefficient of 0.999
for this plot confirms the ability of the ANN model to simulta-
neously predict Rls of four columns at different temperatures.
The residuals of the ANN calculated values of the RI are plotted
against their experimental values in Figure 2. The propagation
of the residuals on both sides of the zero line indicates that no
systematic error exists in the development of the neural net-
work. In a comparison of the present model with other previ-
ously reported models (11-13), it was concluded that the
present QSPR model is able to simultaneously calculate the
retention indices of aliphatic aldehydes and ketones of four sta-
tionary phases at different temperatures using three molecular
descriptors and only one ANN model.

Table V. The Statistical Parameters Obtained Using the ANN and MLR Models*
Conclusion
MLR ANN
Group F SE R F SE R In this work, MLR and ANN are used as
feature mapping techniques for the predic-
Training 6832428 47.441 0.972 40851.45 8.047 0.999 tion of the retention indices of some
Test 1184.900 46.848 0.969 31754.99 9.881 0.999 aliphatic aldehydes and ketones. The opti-
Prediction ~ 1321.585 50.473 0.972 33991.69 10.479 0.999 mized 4-3-4 ANN model with three molec-
ular descriptors appearing in the MLR
1500
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Figure 1. Plot of the calculated retention indices against the experimental Figure 2. Plot of the residuals versus experimental values of retention
value. indices.
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model as its inputs showed a remarkable improvement over the
linear model. The capability of this model in the simultaneous
prediction of retention indices for aldehydes and ketones at
four stationary phases in different temperatures adds another
dimension of application of the ANN in QSPR studies. Also, the
appearance of path one connectivity indices, dipole moment,

and
face

fractional atomic charge weighted by partial positive sur-
area in the model indicate the importance of the steric and

electronic interactions in the molecular retention in GC.
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